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Consideration is given to the formulations of the primal and inverse problems of calculation of bubbling proc-
esses in axisymmetric channels with a variable flow area. A physico-mathematical model of motion of a bub-
ble gas-liquid mixture and results of numerical calculations are presented.

In recent times, bubbling plants have found wide use in various industrial fields. Physico-chemical processes
occurring when a gas is allowed to pass through the bulk of a liquid provide a basis for aeration, flotation, purification
of sewage, and cleaning of a dust-laden air; they are used in the chemical industry. In a number of cases, to intensify
the technological processes it becomes necessary to prescribe the required distribution of the parameters of a gas-liquid
system, formed as a result of bubbling, over the height of the plant. In particular, in enrichment of minerals or bio-
logical purification of sewage, it is desirable that the gas-liquid mixture have a variable concentration of the gas phase
with the higher value of it in the upper part of the bubbling plant.

As experience in the use of flotation and aeration plants with cylindrical channels shows [1], the value of the
gas content in them is usually no higher than 1.5%. A substantial increase in it can be attained either by using the
countercurrent scheme of motion of the liquid and gas phases [2, 3] or as a result of the application of channels with
a variable flow area. In the first case the distribution of the concentrations of the phases over the height of the cylin-
drical channel remains constant, in practice, whereas in a gas-liquid layer taken separately one tracks their nonunifor-
mity caused by the migration of gas bubbles from the periphery to the center [4]. Because of this, it is appropriate to
consider the second approach as being the most acceptable of the indicated ones.

The use of multidimensional mathematical models to describe the dynamics and heat and mass exchange of
bubble gas-liquid mixtures involves certain difficulties associated, first of all, with the current absence of an efficient
method which is capable of taking into account the characteristic features of the carrier and dispersed phases and the
interactions at the phase boundary. The most remarkable works (from a very short list) on this subject are devoted to
solution of particular issues, namely: tracking of the paths of individual particles of the mixture [5], propagation of
disturbances in the medium [6], etc. The problems in them are formulated with numerous assumptions, probably be-
cause of the desire of researchers to adjust investigation results to one numerical method of gas- and hydrodynamics
or another.

One-dimensional variants modeling, for example, the rise of a single bubble in a viscous boundless fluid [7]
or the cavitation and erosion of metallic surfaces because of the collapse of bubbles [8], despite the fact that they have
limitations on use and are also not free from simplifying prerequisites, are distinguished by a high degree of reliability,
diversity of the efficient methods of numerical implementation, and clear presentation of the basic features of the ac-
tual physical process. Thus, at least at present, they are the only efficient means for investigating in this field.

We consider the rise of a group of bubbles in a viscous fluid and investigate the influence of the variability
of the cross-sectional area on the change in the gas content along the longitudinal axis of a bubbling device.

Mathematical Model. The system of equations formulated below describes a one-dimensional steady-state
change, along the longitudinal axis of a bubbling channel, in the parameters of a gas-liquid system consisting of an
incompressible fluid and spherical gas inclusions; the system disregards the processes of collision, fragmentation, and
coagulation of dispersed particles and interphase mass exchange. The model includes the following equations:
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of conservation of the mass of the gas phase
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of conservation of the energy of the gas phase
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for the volume concentrations of the components of the phases

ϕ1 + ϕ2 = 1 ;

for the pressure distribution of the fluid
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P1 = P1h + ρ1 g (H − x) ;

of state of the gas

P2 = ρ2RT2 ;

for interphase heat exchange [7]
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 .

For numerical integration we must reduce the ordinary differential equations of the system to the canonical
form

dΦ
dx

 = fk ,

where Φ = 

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V1, V2, r, T2, Θ



. The content of the right-hand sides of these equations is largely determined by the for-

mulation of the problem. It is appropriate to single out here two classes of problems: the primal problem and the in-
verse one.

Primal Problem. The parameters of the gas-liquid mixture are calculated in the case of its motion in an ax-
isymmetric channel of prescribed shape. The basic calculated parameters will be as follows: gas content ϕ2, velocity
V2 and radius r of the bubbles located in a gas-liquid layer which is perpendicular to the axis of symmetry of the
channel and is considered separately, temperature of the gas inside the bubbles T2, and velocity of the liquid in the
layer V1. The last two parameters can be disregarded in the cases of equality of the liquid and gas temperatures.

In addition to the equations presented, we must introduce into consideration the relation describing the change
in the cross-sectional area of the channel as a function of its height. It is convenient to put it into the form

F = F0 + 
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H
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 − x
2) ,

where b and c are the constants characterizing the curvilinearity of the generatrix of the channel wall. According to
the analogous expression, we can prescribe the distribution of the liquid temperature over the height.

The reduced ordinary differential equations were solved by the Runge–Kutta method as applied to the system
air–water. On the basis of the conditions of stability of the method, the variable value of the integration step was
taken in accordance with the expression
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where fk (k = 1, 2, 3, 4, 5) is the value of the right-hand side of the kth ordinary differential equation written in ca-

nonical form with allowance for Θ = dr/dx. The initial conditions required for integration were used in the following

form: V1 = V10, V2 = V20, T2 = T20, r = r0, Θ = 0, n = n0, ϕ20 = 
4
3

 πr0
3n0, ϕ10 = 1 − ϕ20, P10 = P1h + ρ1gH, P20 =

P10 + 
2Σ
r0

, and ρ20 = 
P20

RT20
.

Results of the calculation of a change in the gas content over the height in cylindrical (curves 1 and 3) and
conical (curves 2 and 4) channels are presented in Fig. 1. The initial portion of rise is characterized by a sharp de-
crease in the gas content of the layers, located here, because of the increase in the velocity of rise of the bubbles upon
separation from the openings of gas-intake devices, which leads to a decrease in their number in a separately consid-
ered gas-liquid layer.
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The increase in the bubble-rise velocity is especially enhanced by the presence of a cocurrent liquid flow
(curves 1 and 2). The character of the arrangement of the dependences in Fig. 1 yields that a substantial increase in
the gas content over the height can be attained in bubbling the gas through a layer of immobile liquid in a convergent
channel (curve 4).

Inverse Problem. A distinctive feature of this approach is calculation of the parameters of the gas-liquid sys-
tem simultaneously with determination of the cross-sectional area of the channel at each iteration step (which gives an
idea of the configuration of the bubbling channel as a whole), whereas the distribution of the gas content over the
height is prescribed for one reason or another. The case considered here is of greatest practical interest since it enables
one to attain the optimum regimes of the processes and to decrease the overall dimensions of the plants used. For fur-
ther numerical implementation of the model it is more convenient to prescribe the dependence for the gas content in
the form of a third-degree polynomial:

ϕ2 =  ∑ 

k

4

 Akx
k−1

 ,

where Ak (k = 1, 2, 3, 4) are the prescribed numerical factors.
Figure 2 shows as an example the calculated shape of the channel that ensures, through its length, the most

favorable medium for the vital functions of microorganisms constituting activated sludge in dispersing the air through
the sewage. The distribution of the gas content is prescribed by the expression

ϕ2 = 0.00672x
3
 − 0.0691x

2
 + 0.3117x + 0.045 .

Fig. 1. Dependences of the change in the gas content over the channel height:
1) F = const and V10 ≠ 0; 2) F ≠ const and V10 ≠ 0;  3) F = const and
V10 ≠ 0;  4) F ≠ const and V10 = 0. x, m; F, m2; V10, m/sec.

Fig. 2. Configuration of a bubbling channel ensuring the required gas-content
distribution. x, m; R and R0, m.
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The configuration given in Fig. 2 is characterized by the accumulation of gas bubbles in the lower part of the
channel due to the substantial decrease in the cross-sectional area, the formation of a nearly foamy structure of the
gas-liquid mixture in the central part with an invariable area, and the decrease in the concentration of the liquid be-
cause of its flowing out under gravity in a slightly divergent upper region.

NOTATION

Cµ, coefficient of resistance of the disperse particle to flow; cp, specific heat of the liquid at constant pres-
sure; cv, specific heat of the gas at constant volume; F, cross-sectional area of the channel; fµ and fr, interphase forces
per disperse particle (respectively, resistance to flow and inertialess component of the additional-mass force); g, accel-
eration of gravity; H, linear dimension over the height; n, number of disperse inclusions in a unit volume of the gas-
liquid system; P, pressure; P

__
, averaged pressure in the volume of the gas-liquid mixture; q, heat flux; R, gas constant;

R, channel radius; r, bubble radius; T, temperature; V, velocity; x, coordinate reckoned from the dispersion device; α,
heat-transfer coefficient; λ, thermal conductivity; µ, coefficient of dynamic viscosity; ρ, density; Σ, surface-tension co-
efficient; ϕi, volume concentration of the ith phase (i = 1, 2); ψ(1), ψ(2), and ψ(3), coefficients taking into account the
influence of the lack of singleness of bubbles on the value of the additional masses; Nu = 2rα ⁄ λ, Nusselt number; Pr
= cp µ ⁄ λ, Prandtl number; Re = 2r V1 − V2  ρ1

 ⁄ µ, Reynolds number; Θ = dr/dx, convective component of the veloc-
ity of the interphase boundary referred to the velocity of a bubble; s, integration step used for the axis of the bubbling
device. Subscripts: 1, carrier phase; 2, dispersed phase; 0, initial value of the parameter; h, value of the parameter on
the free liquid surface; k, ordinal number of the element of a massif.
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